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Abstract 

We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where 

different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software 

system. The new version also has a new set of state-of-the-art physical parameterizations and greater 5 

computational parallel and memory usage efficiency. Together with the description of the main features are 

examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of 

rainfall systems over South America in different spatial resolutions using a scale-aware convective 

parameterization. Besides, the simulation of the diurnal cycle of the convection and carbon dioxide 

concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large 10 

portion of South America are shown. Atmospheric chemistry examples present model performance in 

simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer 

transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution 

associated with the eruption of a Chilean volcano. Then, the gain of computational efficiency is described with 

some details. BRAMS has been applied for research and operational forecasting mainly in South America. 15 

Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather 

Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface 

variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South 

America. Requirements for keeping this modeling system competitive regarding on its functionalities and skills 

are discussed. At last, we highlight the relevant contribution of this work on the building up of a South 20 

American community of model developers.   

1 Introduction 

The Brazilian developments on the Regional Atmospheric Modeling System version 5.2 (hereafter, BRAMS 

5.2) is derived from the Regional Atmospheric Modeling System (RAMS, Cotton et al., 2003) originally 

developed at Colorado State University in the USA. BRAMS/RAMS are multipurpose numerical weather 25 

prediction models designed to simulate atmospheric circulations spanning from planetary scale waves down to 

large eddies of the planetary boundary layer. BRAMS developed its own identity and diverged from RAMS 

with several new features and modifications that have been included to improve the numerical representation of 

fundamental physical processes on tropical and subtropical regions (Freitas et al., 2005b, 2009). Additionally, 

BRAMS includes an urban surface scheme coupled with a photochemical model (Freitas et al., 2005a, 2007), a 30 

complete in-line module for atmospheric chemistry and aerosol processes (Longo et al., 2013), as well as a 

state-of-the-art surface scheme to simulate the energy, water, carbon and others biogeochemical cycles (Moreira 

et al., 2013), which extend RAMS original functionalities towards a fully integrated environmental model. 

Back in the 1990’s, a consortium between ATMET (Atmospheric, meteorological, and Environmental 

Technologies) company from United States, the Institute of Mathematics and Statistics (IME), the Institute of 35 

Astronomy, Geophysics and Atmospheric Sciences (IAG) of the University of São Paulo (USP) and the Center 

for Weather Forecasting and Climate Studies of the Brazilian National Institute for Space Research 

(CPTEC/INPE) started the BRAMS project funded by the Brazilian Funding Agency of Studies and Projects 

(FINEP). Nowadays, BRAMS is one of the models operationally used at CPTEC and in several other regional 

weather forecast centers in Brazil. In CPTEC, a previous version of BRAMS has been applied since 2003 for air 40 
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quality forecasting over a domain that encompasses the entire South America with a grid spacing of 25 km. 

Simultaneous (in-line) predictions of weather and atmospheric composition are available in real time, including 

smoke from vegetation fires. Since the 1st of January, 2013, BRAMS has been running operationally on the 

CPTEC’s supercomputer, using 9600 cores, to process twice a day regional weather forecasts on 5 km grid 

spacing and over a domain covering the entire South America and neighboring oceans.  5 

BRAMS has also been applied for numerical studies in several universities and research centers addressing local 

storms, urban heat island, urban and remote (e.g. fire emissions) air pollution, aerosol-cloud-radiation 

interactions, carbon and water cycles over the Amazon, volcanic ash dispersion, etc. Numerous Ph.D. thesis and 

Master dissertations, including institutions outside Brazil, have been written on BRAMS developments and  

applications. 10 

From the computational point of view, improved code structure and optimization ensures great scalability in 

several architectures. BRAMS runs on massively parallel supercomputers, clusters, and personal x86 systems 

with high efficiency. The development follows a modular approach to code design, allowing users to write and 

plug in additional modules as necessary. BRAMS and its components are open source and available under the 

GNU General Public License at the web page http://brams.cptec.inpe.br. 15 

At this point, we believe BRAMS has capabilities analogous to the state-of-the-art limited area integrated 

atmospheric chemistry transport models such as WRF-Chem (Grell et al., 2005) and COSMO-ART (Vogel et 

al., 2009).  

This paper is organized as follows. Section 2 introduces the modeling system focusing on the novelty in 

comparison with the original RAMS mode. In Section 3 we highlight the main applications of BRAMS for 20 

operational forecast of weather and integrated weather and chemistry on South America. Section 4 will  

summary the accomplishments and session 5 will instruct about the code availability. 

2 Model system description 

BRAMS solves the compressible non-hydrostatic equations described by Tripoli and Cotton (1982), reproduced 

here though omitting the horizontal and vertical grid transformations for convenience. The equations of motion 25 

are: 
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The thermodynamic equation is: 30 
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The water species mixing ratio continuity equation reads: 
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Finally, for the mass continuity RAMS solves the equation, expressed in terms of the Exner function: 5 
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The previous equations are all Reynolds-averaged and the prognostic variables have the usual meaning (see 

Table 1). BRAMS is equipped with a multiple-grid one-way nesting scheme to perform downscaling on 

computational meshes of increasing spatial resolution. Original capabilities and physical formulations available 

within RAMS model and inherited by BRAMS are described in Cotton et al. (2003) and references therein, 10 

where the reader is asked to search for further information about RAMS, which shall not discussed here. This 

paper will mostly concentrate on BRAMS additional features in comparison with the RAMS model. Table 2 

summarizes the main options and characteristics present in BRAMS. The following sections introduce some key 

aspects of BRAMS and exemplify its added capabilities. 

2.1 Aspects of the Dynamics 15 

2.1.1 Complete, mass conservative formulation for the Exner function prognostic equation  

BRAMS original prognostic equation for the Exner function was derived by Klemp and Wilhelmson (1978, 

hereafter KW78). The prognostic equation was obtained by combining the ideal gas equation with the mass 

continuity equation for compressible fluids. Medvigy et al. (2005, hereafter M05) expanded the original Eq. 6, 

which now reads 20 
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KW78 pointed out that the first term of the right-hand-side of Eq. (7) typically has a higher order of magnitude 

than the other terms in studies of cloud dynamics, and the simplified version of Eq. (7) became the standard 

solution in both RAMS and BRAMS. However, KW78 also pointed out that the simplified equation violates 

mass conservation and deteriorates the accuracy of predicted pressure fields. M05 evaluated the conservation of 25 

mass in a regional simulation for New England, and found the loss rates to be as large as 3% day-1, and showed 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-130, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 7 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



5 

 

a significant improvement when the full equation was included. In this version of BRAMS, both the native and 

the complete form of the prognostic equation are available, and following M05 implementation, in BRAMS 5.2 

we also solved the advection, divergence, and heating terms of Eq. (7) using the main time step, whereas the 

heat flux term is updated using the acoustic time step.  

2.1.2 Time integration schemes 5 

RAMS employs a hybrid time integration scheme combining leapfrog scheme for the wind components and 

Exner function with forward-in-time for scalars. The computational mode produced by the leapfrog scheme is 

damped with the application of the Robert-Asselin time filter (Asselin, 1972), which makes the overall accuracy 

of 1st order. Williams (2009) proposed a simple modification in this time filter with few extra lines of coding but 

increasing the accuracy of the scheme to 3rd order. This improved time filter is available in BRAMS by 10 

appropriate setting of a flag in the RAMSIN namelist input file. 

A third option for time integration in BRAMS in based on the work of Wicker and Skamarock (2002, hereafter 

WS2002). This scheme has proven to be very robust and efficient being applied in several state-of-the-art non-

hydrostatic atmospheric models (e.g., Skamarock and Klemp, 2008, Baudauf, 2008 and 2010, Skamarock et al., 

2012). The WS2002 scheme is a low storage Runge-Kutta type with 3 stages and 3rd order for linear problems 15 

(hereafter RK3). The 3 stages require 3 evaluations of the slow mode tendencies (e.g. advection term), however, 

this cost is offset by the larger time step allowed by the scheme when allied with high order advection scheme 

(see discussion in Section 2.1.3). 

The last option for time integration scheme was described by Wicker (2009). This technique is made by a 

combination of 2 schemes applied in 2 steps. A predictor step is performed applying Adams-Bashforth of 2nd 20 

order scheme and then a corrector step is completed applying Adams-Moulton of 3rd order scheme (hereafter 

ABM3). ABM3 is of 3rd order and requires only 2 evaluations of the slow mode tendencies, demanding, 

however, a larger memory footprint than RK3 and a shorter time step. The advantage of using ABM3 over RK3 

might arise when the length of the time step required by model stability is not dictated by the advective transport 

but by other physical processes (e.g. cloud microphysics).  25 

2.1.3 Additional advection schemes 

2.1.3.1 Monotonic scheme for advection of scalars 

An additional advection scheme, which preserves the initial monotonic characteristics of a scalar field being 

transported with simultaneously levying low numerical diffusion, is available in BRAMS. The method 

developed by Walcek (2000) is highly accurate and absolutely monotonic. Freitas et al. (2012) reported its 30 

implementation in BRAMS and related impacts on the accuracy of the transport of relatively inert tracers as well 

as on the formation of secondary species from non-linear chemical reactions of precursors. The results revealed 

that the new scheme produces much more realistic transport patterns, without generating spurious oscillations 

and under- and overshoots or diffusing mass away from the local peaks. Besides these features, the scheme also 

presents good performance on retaining non-linear tracer correlations and conserving mass of multi-component 35 

chemical species. The latter feature is not evident since monotonic preserving filters typically make the 

numerical advection scheme non-strictly linear. 

As an example of the application of this scheme within of BRAMS, the advection of a hypothetical rectangular 

parallelepiped tracer field by a realistic 3-D wind flow is discussed as follow. The model was configured with 
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one grid with 10 km horizontal grid spacing covering the southeast part of Brazil and with a time step of 15 

seconds. The total length of the time integration was 24 hours. The tracer mass mixing ratio is initiated with 100 

au and the background is set to zero. The horizontal domain initially occupied by the tracer is shown on panel A 

of Figure 1, while in the vertical the tracer was initially localized between 1.7 and 4.1 km in height (not shown). 

The tracer mass mixing ratio distribution 12 hours after and simulated by the monotonic advection scheme is 5 

shown on panel B of Figure 1. In this study, the original advection scheme of BRAMS noticeably introduced 

spurious oscillations, overshoots and undershoots, the latter with negative values of mass mixing ratio (not 

shown here, see Freitas et al 2012 for further details). On the other hand, the simulation produced by the new 

scheme is much better at keeping the monotonicity of the distribution without spurious oscillations and negative 

mass mixing ratio, even for a real strongly divergent and deformational wind as presented on panel B. 10 

2.1.3.2 High order advection schemes 

Following WS2002, BRAMS has also a new set of advection schemes to be applied in conjunction with RK3 or 

ABM3 time schemes. The set is comprised of first to sixth order spatial approximations for the fluxes at the 

edge of the grid cells. Also, exactly the same flux approximation can be applied for advection of scalars and 

momentum. Positivity constraint for scalars can be applied following Skamarock (2006).  15 

Future versions of BRAMS will include also monotonicity constraints for scalars and an option for the WENO 

(Weighted Essentially Non-Oscillatory) 3rd and 5th orders formulation (Baba and Takahashi, 2013) for the 

advection operators. 

2.2 Physical parameterizations 

2.2.1 Microphysics  20 

2.2.1.1 Two-moment parameterization from RAMS/CSU 

The current version of the two-moment (2M) microphysical parameterization used in RAMS, version 6, has 

been implemented into BRAMS. This scheme has prognostic equations for number concentration and mixing 

ratio for eight hydrometeors categories (cloud, drizzle, rain, pristine, snow, aggregates, graupel and hail). Each 

hydrometeor size spectrum is described by a generalized gamma distribution with a user specified shape 25 

parameter  (Meyers et al., 1997, Saleeby and Cotton, 2004, 2008). 

According to Cotton et al. (2003), the 2M microphysical scheme comes with an efficient and stable algorithm 

for heat and vapor diffusion without requiring numerical iteration (Walko et al., 2000), sea salt and dust 

treatment and bin sedimentation scheme. Lately, Saleeby and Cotton (2008) developed a binned approach to 

cloud-droplet rimming, which computes the collision-coalescence process between ice and cloud particles in a 30 

more realistic way. 

Cloud and drizzle number concentrations are computed from cloud condensation nuclei (CCN) and Giant CCN 

(GCCN) concentrations, respectively. A Look-Up-Table (LUT) is used to obtain the CCN concentration that is 

activated as function of aerosol size, concentration, and composition via hygroscopicity parameter (Petters and 

Kreidenweis, 2007), as well as updraft velocities, pressure and temperature. On the other hand, GCCN 35 

activation does not depend on the environment conditions, being completely used into drizzle nucleation 

process. Both aerosol categories may be advected, diffused, depleted and restored (by droplet evaporation) as 

well as have their initial concentrations specified by the user as either homogeneous or heterogeneous fields 

(Saleeby and Cotton, 2004, 2008). 
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2.2.1.2 Thompson cloud microphysics 

The aerosol aware bulk microphysics scheme described in Thompson et al., (2008), and Thompson and 

Eidhammer (2014), hereafter GT, was also implemented in BRAMS. The GT scheme treats five separate water 

species, mixing single and double moment treatment for different cloud species to minimize computational cost. 

It also includes the activation of aerosols as cloud condensation (CCN) and ice nuclei (IN) and, therefore, 5 

explicitly predicts the droplet number concentration of cloud water as well as the number concentrations of the 

two new aerosol variables, one each for CCN and IN. The aerosol species are lumped into two different groups 

according to their hygroscopicity. Hygroscopic aerosols are in the general category of “water friendly” (Nwfa), 

and the nonhygroscopic ice-nucleating aerosols are in the group “ice friendly” (Nifa). As a first approximation, 

Nifa is assumed to be only mineral dust in the accumulation model; and all the other species (sulfates, sea salts, 10 

and organic matter, and black carbon) are assumed to be a mixture of the species in each population and 

allocated to the hygroscopic mode Nwfa. 

Aerosol activation also uses a LUT of activated fraction determined by temperature, vertical velocity, aerosol 

number concentration, and hygroscopicity parameter determined by the model. The lookup table was build 

following Köhler activation theory within a parcel model from Feingold & Heymsfield (1992) with additional 15 

changes by Eidhammer et al. (2009) to use the hygroscopicity parameter (Petters & Kreidenweis 2007). This 

approach is similar to one used by RAMS CSU microphysics previously described (Saleeby and Cotton, 2004, 

2008). However, the lookup-table of GT has a coarser variation in the terms of hygroscopicity parameter 

compared to RAMS CSU. The coarse resolution of the LUT in terms of aerosol hysgroscopicity contributes to 

GT scheme low cost, though also represents a limitation for ambient with high loading of very low hygroscopic 20 

aerosols, such as biomass burning affected areas (Gácita et al., 2016).  

2.2.1.3 Abdul-Rassack parameterization 

As a low-cost option to the explicit aerosol aware microphysics schemes described above, the parameterization 

of aerosol particle activation as CCN was also implemented following the approach of Abdul-Razzak and Ghan 

(2000, 2002). This scheme, in its form for multiple log-normal distributions, assumes that the particles are in 25 

equilibrium with the environment and the terms of curvature and the solute in the growth of the particle after the 

activation can be neglected. As a first approach, for applications in a black-carbon rich atmosphere, the aerosol 

activation can be done via Abdul-Rassack parameterization and feed either the GT or RAMS CSU microphysics 

directly with the CCN number concentration. 

2.2.2 Radiation 30 

2.2.2.1 CARMA and RRTMG schemes 

BRAMS radiation module includes two schemes to treat atmosphere radiative transfer consistently for both 

long- and short-wave spectrum. The first scheme is a modified version of the Community Aerosol and Radiation 

Model for Atmospheres (CARMA) (Toon et al., 1989), and the second one is the Rapid Radiation Transfer 

Model (RRTM) version for GCMs (RRTMG, Mlawer et al. 1997; Iacono et al. 2008). RRTMG shares the same 35 

basic physics as RRTM, though it incorporates several modifications (Iacono et al. 2008) in order to improve 

computational efficiency. CARMA and RRTMG schemes both solve the radiative transfer using the two-stream 

method and include all the major molecular absorbers (water vapor, carbon monoxide, ozone, oxygen) and 

aerosol extinction. The RRTMG implementation preserved all the absorption coefficients for molecular species 
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used in the correlated k distribution method, which were based on a line-by-line model (Iacono et al., 2008). 

CARMA treats gaseous absorption coefficients using an exponential sum formulation (Toon et al., 1989).  

Radiation schemes in BRAMS are both on line coupled with the aerosol and cloud microphysics modules to 

provide on line simulations of aerosol-cloud-radiation interactions. 

Aerosol extinction is simulated feeding both CARMA and RRTMG radiative schemes with Aerosol Optical 5 

Depth (AOD) profiles calculated from forecasted particles mass loading and prescribed aerosol intensive optical 

properties, specifically the extinction efficiency, single scattering albedo and asymmetry parameter taken from a 

LUT. Aerosol intensive optical parameters prescription is regionally dependent. For South America, the 

parameters present in the LUT (Procopio et al. 2001, Rosario et al., 2013) are obtained from off-line Mie 

calculations using as input climatological particle size distribution and the complex refractive index from sites 10 

of the AErosol RObotic NETwork (AERONET, Holben et al., 1998) distributed across South America.  

Cloud physical (ice and liquid water path and particle sizes) and optical properties (optical depth) in CARMA 

radiative scheme, have been parameterized according to Sun and Shine (1994), Savijarvi (1997), and Savijarvi 

et al. (1997, 1998) using liquid and ice water content profiles provided by BRAMS cloud microphysical module. 

In this case, subgrid-scale cloud variability is not taken into account.  15 

For RRTMG scheme, the optical properties of liquid and ice water are from Hu and Stamnes (1993) and Ebert 

and Curry (1992), respectively, and subgrid-scale cloud variability including cloud overlap is statistically 

addressed with McICA (Iacono et al., 2008), the Monte Carlo Independent Column Approximation [Barker et 

al., 2002; Pincus et al., 2003].  

The MCICA approach presupposes that cloud liquid water and ice, and cloud fraction are prognostic variables. 20 

As so, the cloud liquid water effective radius was parameterized in BRAMS following the generalized power-

law expression of Liu et al. (2008): 

                                                  𝑟!" =
!

!!!!

!
! 𝛽 !"#

!

!
!                                                   (8) 

where LWC is the liquid water content, and  is the water density, and N is the cloud droplets number 

concentration. L and N are in CGS units. b is a dimensionless parameter that depends on the spectral shape of 25 

the cloud droplet distribution, set based on observation as: 

                                                           𝛽 = 𝑎!
!"#
!

!!!
                                                          (9) 

with 𝑎! and  𝑏!  equal to 0.07 and 0.14, respectively.  

The cloud radiative forcing is very sensitive to the determination of b. According to Liu et al. (2008), b 

increases with aerosol loading and leads to a warming effect that acts to substantially offset the cooling of the 30 

Twomey effect by a factor of 10 to 80%. A b < 1/3  leads to a weaker dependence of rel on LWC/N and a 

smaller indirect aerosol effect, with a better agreement with observation. In principle, this generalized power-

law expression for re, effectively accounts for the increase in droplet concentration and decrease in droplet size 

due to aerosol (Twomey, 1974), as well as the reduction on precipitation efficiency, which increases the liquid 

water content, the cloud lifetime (Albrecht, 1989), and the cloud thickness (Pincus and Baker, 1994).   35 

The ice effective radius was parameterized in BRAMS following (Wyser, 1998), with an explicit dependence on 

both ice water content and temperature: 

                              𝑟!" = 377.4 + 203.3𝐵 + 37.91𝐵! + 2.3696𝐵!                                     (10) 

                                  𝐵 = −2 + 10!! 273 − 𝑇 !.!𝑙𝑜𝑔!"
!"#
!"#!

                                              (11) 
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where T is the temperature in Kelvin, IWC is the ice water content in gm-3, and IWC0=50gm-3. 

This parameterization assumed the ice crystals consisting of hexagonal columns, and so is compatible with the 

ice optical properties from Ebert and Curry (1992) assumed in RRTMG. 

In addition, to fulfill MCICA requirements, a cloud fraction representation was also implemented in BRAMS, 

based on the parameterization originally from the Community Atmosphere Model (CAM, 5 

http://www.cesm.ucar.edu/models/cesm1.2/cam/), which is a generalization of the scheme introduced by Slingo 

(1987), with variations described in Kiehl et al. (1998); Hack et al. (1994), and Rasch and Kristjánsson (1998). 

In this representation, three types of cloud are diagnosed, depending on relative humidity, atmospheric stability, 

and convective mass fluxes: low-level marine stratus, shallow and deep convective clouds, and layered cloud. 

The marine stratus clouds are located according to the identification of stable layers between surface and 700 10 

mb (> 0.125 K/mb) and using the following empirical relationship from Klein & Hartmann  (1993):  

                           𝐶!" = 𝑚𝑖𝑛 1. ,𝑚𝑎𝑥 0. , 𝜃!"" − 𝜃! ∗ .0.057 − 0.5573                          (12) 

where q700 and qs is the potential temperatures at 700 mb and surface levels, respectively. The stratus clouds are 

located just below the strongest stability jump between these two levels. 

The convective clouds fraction follows Xu and Krueger (1992) formulation based on the updraft mass flux, both 15 

for shallow and deep: 

                                     𝐶!!!""#$ = 𝑘!,!!!""#$𝑙𝑛  (1.0 + 𝑘!𝑀!,!!!""#$)                                  (13) 

                                            𝐶!""# = 𝑘!,!""#𝑙𝑛  (1.0 + 𝑘!𝑀!,!""#)                                        (14) 

With k1,shallow = 0.07 , k1,deep= 0.14, k2 =500, and Mc is the convective mass flux at the given level. 

Any other clouds are diagnosed according to the relative humidity: 20 

                                            𝐶! = 𝑚𝑖𝑛 0.999, 𝑚𝑎𝑥 !!!!"!"#
!!!"!"#

!
                                       (15) 

                                                𝑅𝐻!"# =
𝑅𝐻!"#!"# , 𝑝 ≥ 750  𝑚𝑏
𝑅𝐻!"#

!!"! , 𝑝 < 750  𝑚𝑏
                                          (16) 

with 𝑅𝐻!"#!"# = 0.90 and 0.80, over water and land, respectively, and 𝑅𝐻!"#
!!"! = 0.80. 

                                             𝐶! = 𝑚𝑖𝑛 0.999, 𝑚𝑎𝑥 !!!!"!"#
!!!"!"#

!
                                      (17) 

The total cloud fraction in the grid cell is:  25 

                                           𝐶!"! = 𝑚𝑖𝑛 1,𝑚𝑎𝑥 𝐶!" ,𝐶!""#,𝐶!!!""#$ ,𝐶!                             (18) 

The total cloud optical depth is given by the contribution from liquid and ice water contents, and as well account 

for the cloud fraction. 

2.2.3 Turbulence parameterizations 

2.2.3.1 Nakanishi & Nino TKE based formulation 30 

In BRAMS, as in the original RAMS formulation, the local changes of momentum and scalars due to turbulent 

transport depend on the divergence of turbulent fluxes (RAMS, 2003). When the grid resolution is coarser than 

the size of the largest eddies (typically coarser than 100m −1km), the eddy covariance fields needed to 

determine the turbulent fluxes are determined through the K-theory (Stull, 1988), which requires the 

determination of eddy diffusivities for momentum and scalar quantities 35 
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′u ′v = ′v ′u =−Kmh
∂u
∂y
+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟
,

uh'w' = −Kmz
∂uh
∂z

,

w'uh' = −Kmz
∂w
∂xh

,

uh'ε' = −Khh
∂ε
∂xh

,

w'ε' = −Khz
∂ε
∂z
,

 (19) 

where (x,y) are the horizontal directions (xh is either x or y), z is the vertical direction, (u,v) are the horizontal 

wind directions (uh is either u or v), w is the vertical velocity and ε is any scalar, Kmh and Kmz are the horizontal 

and vertical diffusivity coefficients for momentum, Khh and Khz are the horizontal and vertical diffusivity 

coefficients for scalars. It is important to note that the equations (3-4) are only to be used when the grid 5 

horizontal resolution is much coarser than the vertical resolution because they violate vorticity conservation, 

however, different scales are needed when the horizontal and vertical grid resolution are different to avoid 

numerical instabilities (RAMS, 2003).  

The horizontal diffusivities are determined using the same algorithm implemented in RAMS, which is based on 

the Smagorinsky (1963), with the inclusion of the Brunt-Väisäla correction by Hill (1974). For the vertical 10 

diffusivity coefficients, we use a vertical parameterization based on the level-2.5 model by Mellor and Yamada 

(1982), further modified by Nakanishi and Niino (2004). In this model, the diffusivity coefficients depend on 

turbulent kinetic energy per unit mass (TKE), which also becomes a prognostic variable:  

 

Kmz = LqSm ,
Khz = LqSh,

q = 2TKE = u'u'+v'v'+w'w'

 (20) 

where L is the master length scale, and Sm and Sh are non-dimensional stability functions for momentum and 15 

buoyancy. Both L and the stability functions are determined following the Nakanishi and Niino (2004), which 

allows for stronger turbulence and deeper boundary layers compared to the original formulation. The non-

dimensional stability functions also include a correction factor to avoid numerical instabilities under growing 

turbulence (see Helfand and Labraga, 1988), and an upper limit on L under very stable conditions to avoid TKE 

becoming negative, following the implementation by Janjić (2001) and Nakanishi and Niino (2006). Although 20 

Nakanishi and Niino (2004) also described a higher-order, level-3 parameterization, this would require including 

prognostic equations for the variance of every scalar and the covariance between pairs of scalars, which would 

rapidly become unmanageable due to high computational load (Mellor and Yamada, 1982).  
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2.2.4 Surface interactions: 

2.2.4.1 Town Energy Budget (TEB) scheme to simulate urban areas 

For model domain including a significant portion of urban area, BRAMS offers the possibility of using a 

combination of LEAF surface scheme (Walko et al., 2000) and the Town Energy Budget (TEB) (Masson, 2000; 

Freitas et al., 2007). The use of the bare soil formulation or the adjustment in the surface-vegetation-atmosphere 5 

transfer (SVAT) scheme parameters is very frequent. However, as stressed out by Masson (2000), such 

approximations are satisfactory for large temporal or spatial averages, it is necessary to incorporate a more 

detailed scheme when smaller scales are considered. Therefore, the simulation of several mesoscale and local 

processes that simultaneously occurs in an urban atmosphere and its surroundings requires a more detailed 

surface parameterization. Such processes include the circulations generated by urban heat islands (UHI) and its 10 

interaction with other atmospheric phenomena (Freitas et al., 2007, Nair et al., 2004), air pollution (Andrade et 

al., 2004, Freitas et al., 2005a), and human comfort conditions (Johansson et al., 2013), among others. In 

BRAMS 5.2, the TEB scheme is activated together with LEAF, and the surface fluxes of momentum, moisture 

and temperature and the surface albedo and emissivity are calculated by TEB whenever an urban grid point is 

identified. LEAF is applied as usual for any other type of land use (e.g., bare soil, water bodies, grass, forest, or 15 

any vegetation). TEB considers the interaction of short and long wave radiation with the urban structure, 

allowing multiple reflections with walls and roads. In addition to the tridimensional urban structure in TEB 

formulation, other advantage is the possibility to simulate the anthropogenic heat and moisture fluxes emitted 

both by mobile sources, such as heavy and light duty vehicles, and fixed sources, such as industries, commerce 

and domestic activities in general. For large cities, such as Sao Paulo and Rio de Janeiro, the anthropogenic heat 20 

sources are a key feature, not only for meteorological reasons, but also for health and public policies 

management. As anthropogenic contributions can vary strongly depending on the urban area, the 

implementation of TEB in BRAMS allows the user to define those contributions in the model configuration file. 

Based on the work of Khan and Simpson (2001), anthropogenic contributions can be estimated by considering 

fuel and electricity consumption as well as the population and their related activities in the area of interest. For 25 

the Metropolitan Area of Sao Paulo (MASP), Brazil, a region with more than 20 million people and more than 7 

million vehicles, Freitas et al. (2007) considered maximum values of 30 and 20 W m-2 for the sensible heat flux 

emission in the peak hours for vehicular and industrial contributions, respectively, which was enough to 

represent most urban heat island features in the region during idealized simulations of the interaction between 

the UHI and the sea-breeze. Nevertheless, higher values can be observed in other urban regions. Therefore, to 30 

limber the model use, urban structure and anthropogenic contributions are user specified in the model namelist, 

as presented in Table 3. 

The diurnal cycle of vehicle activities and other related features (as pollutants emission, for example) are 

dependent on local time. Therefore, there is an input file describing local time as function of latitude and 

longitude of each grid point. Vehicular activity is defined in the model using a double normal distribution 35 

centered on two values of the time of rush hours, which are user defined (Freitas et al., 2005a, 2007). 

2.2.4.2 Joint UK Land Environment Simulator (JULES) model  

In this section, the coupling between the Joint UK Land Environment Simulator (JULES) surface–atmosphere 

interaction model (Best et al., 2011, Clark et al., 2011) and the BRAMS model is concisely described (for 
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further details the reader is referred to Moreira et al., 2013). JULES contains the state-of-the-art numerical 

representation of surface processes and is able to simulate a number of soil-vegetation processes such as 

vegetation dynamics, photosynthesis and plant respiration and also transport of energy and mass in soils and 

plants, including a representation of urban elements. The combination between JULES and BRAMS is fully 2-

way with BRAMS providing atmospheric dynamics, thermodynamics and chemical constituents information to 5 

JULES, which in turn responds with fluxes of horizontal momentum, water, energy, carbon and others tracers 

exchanged between the atmosphere and the surface beneath. In JULES, the land surface is divided in sub-grid 

boxes, which can be occupied by a number of plant functional types (PFTs) and non-functional plant types 

(NPFTs). Up to five PFTs are allowed in each sub-grid box: broadleaf trees (BT), needleleaf trees (NT), C3 

grasses (C3G), C4 grasses (C4G) and shrubs (Sh). A sub-grid box can also be occupied by up to four NPFTs: 10 

urban, inland water, soil and ice. JULES adopts a tiled structure in which the surface processes are calculated 

separately for each surface type. Its initialization requires: land cover and soil type classifications, normalized 

difference vegetative index (NDVI), sea surface temperature, carbon and moisture soil contents and soil 

temperature. 

Moreira et al. (2013) indicated that the application of JULES on simulations over South America implied in 15 

significant gain of skill compared to the original surface scheme in RAMS (LEAF3). As an example, Figure 4 

shows model root-mean-square error (RMSE) of 2-meter temperature, which was calculated using observations 

from ground stations distributed all over a large part of this continent. RMSE corresponds to the first 24-hour 

forecast averaged over 30 runs on the wet (March, panel A) and dry seasons (September, panel B) of 2010. 

During the night, both surface schemes present similar skills, with LEAF3 being slightly better in the dry 20 

season. However, during daytime JULES notably improves model skills in both seasons. As daily average, 

RMSE decreases by approximately 10% with the latter surface scheme. 

2.2.5. Parameterizations of moist convection 

2.2.5.1. Shallow convection 

The shallow cumulus parameterization scheme in BRAMS is a mass flux type described in details by Souza 25 

(1999). The cloud model follows the version of Albrecht et al. (1986) for a single-cloud formulation of the 

Arakawa and Schubert (1974) ensemble scheme. The shallow cumulus characteristic in the cloud model is 

obtained through an entraining function that gives more weight to the side entrainment as air parcels approach 

the cloud top. Therefore, a lifted air parcel from near surface starts with a small entrainment of λ=10-6 m-1, and 

this value increases by an order of magnitude each time the parcel reaches a ten-folding height zf, which is the 30 

only adjustable parameter of the scheme. The entrainment rate is about 10-3 m-1 at the 2.1 km height and for a zf 

of 0.7 km. The cloud top is reached when the total buoyancy of the parcel, integrated from the surface to the top, 

becomes zero. The mass-flux formulation is based on the heat engine framework proposed by Rennó and 

Ingersoll (1996). The derivation of the convective mass flux follows the rationale that the convective heat 

engine, which is driven by surface heat flux, forces the upward motion of air masses. The convective flux is then 35 

a result of the total forcing at the surface, namely the sum of the fluxes of sensible and latent heat, which are 

converted into kinetic energy accordingly the second law of thermodynamics.  Once surface fluxes start forcing 

the heat engine, upward convecting air parcels might reach levels where water vapor saturation take place. The 

triggering function follows the work of Wilde et al. (1985), which showed that moist parcels could give origin to 
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shallow cumuli only when the entrainment zone, located on top of the mixing layer, is above the lifting-

condensation-level zone.  

The scheme is suitable to study the interaction between shallow convection and surface processes. The use of 

this scheme in BRAMS improved the representation of the diurnal cycle of temperature and moisture over land. 

The shallow scheme produces realistic results for convection associated with heterogeneous surface cover. The 5 

impact is more pronounced during the afternoon by enhancing convective rain calculated by the model’s deep 

convection scheme. Over the ocean, where the surface fluxes are less sensitive to solar forcing, shallow cumuli 

can be activated anytime. This scheme has been applied operationally within BRAMS for the last two decades. 

2.2.5.2 Grell and Deveny for deep convection  

Grell and Deveny (2002, hereafter GD) deep convection scheme was included in BRAMS in 2002 and its 10 

implementation is described in Freitas et al. (2005). One of the reasons for the GD inclusion in BRAMS was the 

need of a mass flux scheme for a consistent convective transport of tracers. GD expanded the original 

formulation based on Grell (1993) by including stochastic capability through permitting a series of different 

assumptions that are widely used in convective parameterizations. The GD scheme can use a very large number 

of ensemble members based on five different types of closure formulations, precipitation efficiency and the 15 

ability of the source air parcels to overcome the convective inhibition energy.  

Dos Santos el at. (2013) developed a method to generate a set of weights related with the closure members of 

the GD ensemble to optimize the combination of them. As an inverse problem of parameter estimation, the 

optimization problem for retrieving the weights applied a metaheuristic optimization method called Firefly 

algorithm (FY, Yang, 2008). The method consists of minimizing an objective function computed with the 20 

quadratic difference between BRAMS precipitation forecasts and observation, a measure of the distance 

between the observational data and model results. The method demonstrated to be able to produce an ensemble 

with improved statistical scores compared with the original ensemble mean calculation (dos Santos et al., 2013, 

Santos, 2014). As an example, the categorical verification bias score computed for South America as depicted in  

Figure 5. The mean of a set of 30 forecasts of 24-h accumulated precipitation for 120h in advance of 25 

precipitation for January 2008 (panel A) and 2010 (panel B) was carried out using both GD ensemble arithmetic 

mean (EN) and the ensemble mean using FY method in a 20km model grid configuration. The vertical bars in  

Figure 5 refer to a significance test from the bootstrap method (Hamill, 1999). These results indicate a reduction 

of bias in the low thresholds of precipitation, as well as an increase of the model skills for higher thresholds, in 

agreement with the increase of Equitable Threat Score (not shown) for higher thresholds, both with statistical 30 

significance, which demonstrates that FY is a robust method for training the GD ensemble of closures. 

In addition, GD scheme in BRAMS contains an alternative option for the convective trigger function (CTF), 

which was originally developed by Jakob and Siebesma (2003) and implemented by Santos e Silva et al. (2012). 

In this formulation, the CTF is linked with the sensible and latent surface fluxes. Previous results, within both a 

global model (Betchold et al., 2004) and BRAMS (Santos e Silva et al., 2012) showed improvements on 35 

simulating the diurnal cycle of precipitation over continental areas, especially in tropical South-America. 

2.2.5.3 A scale and aerosol aware convective parameterization for deep and shallow cumulus 

The Grell and Freitas (2014, hereafter GF) scheme is based on the stochastic approach originally implemented 

by GD with several additional features. One new feature is scale dependence formulations for high-resolution 
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runs (or gray-zone for deep convection model configurations) and interaction with aerosols. The scale 

dependence was introduced by two approaches. One is based on spreading subsidence to neighboring grid points 

instead of in the same model convective column, as usually done by classical convective parameterizations. The 

second approach applies methods devised by Arakawa et al. (2011). This work reformulated the eddy fluxes 

associated with the convective transports as a function of the updraft area fraction and the eddy fluxes given by 5 

a closure of a conventional convective parameterization. The idea is readily applied to the conventional 

parameterizations provided that a reliable formulation for the updraft area fraction is achieved. Because of its 

simplicity and its capability for an automatic smooth transition as the resolution is increased, Arakawa’s 

approach is recommended to the BRAMS users.  

A second new feature present in GF is an aerosol awareness capability through a CCN (cloud condensation 10 

nuclei number concentration) dependent autoconversion of cloud water to rain, as well as an aerosol dependent 

evaporation of cloud drops. However, this feature is still in the experimental stage, so caution when using it is 

advised.  

Recently, the GF ensemble of closures has been extended to include a new closure inspired in ideas developed 

by Bechtold et al., (2008, 2014 - hereafter B2014). In the B2014 paper, the authors derive a diagnostic CAPE 15 

based closure where selective boundary layer time scales over land and water are applied. As a consequence, 

theirs convective parameterization improved its capability on the representation of non-equilibrium convection 

forced by boundary layer processes, with a more realistic phase of the associated diurnal cycle over land. In GF 

scheme 2015 version (Freitas and Grell, in prep.), a corresponding closure, although built on the cloud work 

function concept, is included. See the following discussion about model performance with this new closure. 20 

Additionally, GF version 2015 contains a variant scheme for shallow convection (non-precipitating) with three 

options for the closure of mass flux at cloud base (Freitas and Grell, in prep.). 

Several experiments with BRAMS, with the Arakawa’s approach (GF-A), using horizontal grid-sizes of 5, 10 

and 20 km were carried on to evaluate the performance of the GF scheme as well as its behavior on different 

scales. For the 5 km model run we described also the performance of the scheme without applying any scale 25 

correction (GF-NS). Each experiment comprised 15 runs from 1 to 15 January for 36-hour forecasts, all starting 

at 00UTC. 24-hour precipitation accumulations used for verification are taken from 12 to 36-hour. Also, all 

experiments covered the same region and used the same initial and boundary conditions, which were taken from 

NCEP/USA Global Forecast System (GFS) analysis and forecast fields. Physical parameterizations included 

CARMA radiation, JULES surface scheme, Mellor-Yamada 2.5 turbulence scheme and the single-moment bulk 30 

microphysics parameterization from Walko et al. (1995). Model results are presented in Figure 6. Decreasing 

the grid spacing from 20 to 5 km (panels A, B and C), detailed precipitation structures shows up, while the 

broad precipitation distribution is preserved with the domain averaged precipitation, exhibiting deviation in a 

10% range (between 4.1 and 4.5 mm/day). On the other side, the precipitation produced by CP only (lower row, 

panels E, F and G) presents a consistent decrease, becoming less significant, from 3.5 to 1.0 mm/day, allowing 35 

the dynamics and cloud microphysics be responsible for a much larger fraction of the total precipitation. Instead 

of GF-A 5 km run, GF-NS (panel D) resulted in about 20% larger domain average precipitation with much 

smoother spatial distribution. In Panel H, is shown that even on 5 km grid spacing, most of the precipitation (~ 

75%) is generated by the convection scheme. These results demonstrate the ability of the GF-A scheme to 

produce a smooth transition across scales within the BRAMS modeling system. 40 
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Figure 7 introduces an exploratory study on the impacts of the B2014 closure (here called “diurnal cycle” 

closure) on BRAMS results with respect the diurnal cycle of precipitation over the Amazon Basin. Model 

configuration for this study comprised a grid with spacing of 27 km on horizontal and 80 to 850 m on vertical. 

The physical parameterizations and initial and boundary condition were the same as of the preceding scale-

dependence experiment, but GF applied the B2014 approach. Again, model was setup to perform several runs 5 

resembling the operational mode, comprising fifteen runs (from 1 to 15 February 2011) with 120-hour forecast 

each. 

Santos e Silva et al. (2009, 2012) discussed in details the diurnal cycle of precipitation over the Amazon Basin 

using the TRMM rainfall product  (Huffman et al., 2007) and observational data from a S band polarimetric 

radar (S-POL) and rain gauges obtained in a field experiment during the wet season of 1999. Their analysis 10 

indicated that a peak of rainfall is common late afternoon (between 1700 and 2100 UTC), in spite of variations 

existent associated with wind regimes. Figure 7 shows model results with and without the diurnal cycle closure, 

both panels depict area average precipitation from GF scheme (mm h-1), as well as downwelling short-wave 

radiation (W m-2, DSWR). A sample of 5-day forecast initiating on 00UTC 1 February 2011 is presented on 

Panel A. The simulated precipitation from GF scheme not applying the diurnal cycle closure shows a premature 15 

peak with both precipitation and DSWR closely in phase. The introduction of the B2014 closure causes a shift 

between the two curves delaying the peak of precipitation by about 3 hours, in better agreement with the 

observation. The diurnal cycle averaged over the 15 runs with 120-hour forecast each is presented in panel B 

clearly showing the rainfall shift, which demonstrates the robustness of the B2014 closure. One potential 

drawback of this closure is the systematic reduction of the total amount of precipitation evidenced in panel B. 20 

Future work will focus on this issue. 

An example of real time rainfall forecast over South America with BRAMS using a different set of physical 

parameterizations is discussed as follows. The case is associated with a mid-latitude cold front approach 

together with tropical daytime convection over the northwest part of the Amazonia Basin and a weak band of 

convection in the Inter-Tropical Convergence Zone (ITCZ) over the Atlantic Ocean. Figure 8 shows an estimate 25 

of the 24-hour accumulated rainfall given by the TRMM product for the day 12 October 2015 and depicts 

location and rainfall intensities of the cloud systems discussed above. This rainfall estimate is produced on a 

grid with 0.25-degree resolution. Model forecast was done on 5 km horizontal grid spacing with the vertical 

resolution varied from 50 m up to a maximum value of 850 m, with the top of the model at 19 km. The soil 

model was composed of 7 layers distributed within the first 12 meters of the soil depth. Again GFS analysis and 30 

forecast fields were used for initial and boundary conditions, while initial soil moisture was supplied following 

Gevaerd and Freitas (2006) and the sea surface temperature was prescribed using data from Reynolds et al. 

(2002). The physical parameterizations included RRTMG short- and long-wave radiation schemes, GF 2015 

version for deep and shallow convection with the diurnal cycle closure, Thompson single-moment on cloud 

liquid water (no aerosol aware option) cloud microphysics and the MYNN turbulence parameterization. The 35 

model run was completed on a CRAY XE-6 supercomputer using 2400 cores. This configuration took 1.6 hour 

to complete 24 hours forecast with 1360 x1480 on horizontal and 45 on vertical grid points and 12 seconds for 

time step. The simulation applied the hybrid time integration scheme with RA time filter. 

Figure 9 presents the 24-hour accumulated rainfall model forecast for this day. The total (resolved plus from 

convection scheme) rainfall is shown on panel A. Visual comparison with TRMM rainfall (Figure 8) shows that 40 
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model properly reproduces the main rainfall patterns over different parts of South America, in spite of the 

extreme amount of concentrated rainfall estimated by TRMM on Amazon Basin (around 50 S and 650 W) is 

underestimated by the model. Similar model behavior is spotted on the Atlantic Ocean, close to the border 

between Brazil and Uruguay. However, in general, model is able of the capture consistently the rainfall intensity 

as well. Figure 9 B shows the separated contribution of the cumulus convection scheme on the total rainfall 5 

(panel A). Noticeable is the fact that, on 5 km grid spacing, the scale awareness capability of the convection 

scheme allows the rainfall associated with the mid-latitude cold front being almost entirely explicitly resolved. 

On the other hand, over tropical areas a significant part of the total rainfall is rather generated by the convection 

scheme suggesting the existence of much smaller scale rainfall systems, which is not explicitly captured on this 

model resolution. 10 

2.3 Atmospheric composition related processes and tracer transport 

2.3.1 The CCATT in-line emission, deposition, transport and chemical reactivity model  

The Coupled Chemistry-Aerosol-Tracer Transport model (Longo et al., 2013, hereafter CCATT) is a Eulerian 

transport model coupled with BRAMS and developed to simulate the transport, dispersion, chemical 

transformation and removal processes of gases and aerosols for atmospheric composition and air pollution 15 

studies. CCATT computes the tracer transport in-line with the simulation of the atmospheric state by BRAMS, 

using the same dynamical core, transport scheme and physical parameterizations. The prognostic of tracer mass 

mixing ratio includes the effects of sub-grid-scale turbulence in the planetary boundary layer and convective 

transports by shallow and deep moist convection, in addition to grid-scale advective transport. The model 

includes also gaseous/aqueous chemistry, scavenging and dry depositions and aerosol sedimentation.  20 

In a form of tendency, the general mass continuity equation for gas phase tracers solved in CCATT model is 

∂s
∂t

= ∂s
∂t

⎛
⎝⎜

⎞
⎠⎟ adv

+ ∂s
∂t

⎛
⎝⎜

⎞
⎠⎟ PBL
diff

+ ∂s
∂t

⎛
⎝⎜

⎞
⎠⎟ deep
conv

+ ∂s
∂t

⎛
⎝⎜

⎞
⎠⎟ shallow
conv

+ ∂s
∂t

⎛
⎝⎜

⎞
⎠⎟ chem

+W + R +Q   (21) 

where  is the grid box mean tracer mixing ratio, the  term adv represents the 3-d resolved transport (advection 

by the mean wind) and the terms PBL diff, deep conv and shallow conv are for the sub-grid scale turbulence in 

the planetary boundary layer (PBL), deep and shallow convection, respectively. The chem term refers either to 25 

the simple passive tracers’ lifetime (Freitas at al., 2009) or to the calculation of chemical loss and production 

(Longo et al., 2013). The W is the term for wet removal applied only to aerosols, and R is the term for the dry 

deposition applied to both gases and aerosol particles. Finally, Q is the emission source term, which for biomass 

burning emissions also solves the plume rise mechanism associated with vegetation fires (Freitas et al., 2006, 

2007, 2010). 30 

In addition to CCATT-BRAMS code itself, the modeling system includes also three pre-processing software 

tools for user-defined chemical mechanisms (M-SPACK, Longo et al., 2013), aerosol and trace gas emissions 

fields (PREP-CHEM-SRC, Freitas et al., 20011) and the interpolation of initial and boundary conditions for 

meteorology and chemistry (BC-PREP) (see Figure 10). 

The choice of different chemistry mechanisms in CCATT-BRAMS is possible using a modified version of the 35 

pre-processing tool SPACK (Simplified Pre-processor for Atmospheric Chemical Kinetics, Damian-Iordache 

and Sandu, 1995; Djouad et al., 2002). The modified- SPACK (called hereafter M-SPACK) basically allow the 

� 

s 
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passage of a list of species and chemical reactions from symbolic notation (text file) to a mathematical one 

(ODEs), automatically preprocesses chemical species aggregation and creates Fortran 90 routines files directly 

compatible to be compiled within the main CCATT-BRAMS code. The M-SPACK output feeds also the codes 

of the preprocessor tools PREP-CHEM-SRC and BC-PREP of emissions and the initial and boundary fields for 

the chemical species, respectively, in order to ensure consistency between the several input database to be used 5 

in CCATT-BRAMS and the list of species treated in chemical mechanism.  

In principle, M-SPACK allows the use of any chemical mechanism in CCATT-BRAMS, though it requires the 

built of emissions interface. The current version of M-SPACK includes three widely used tropospheric 

chemistry mechanisms: RACM - Regional Atmospheric Chemistry Mechanism (Stockwell et al., 1997), Carbon 

Bond (Yarwood et al., 2005), and RELACS - Regional Lumped Atmospheric Chemical Scheme, (Crassier et al., 10 

2000), which considere, respectively, 77, 36 and 37 chemical species. Photolysis calculations are possible via 

look-up tables of pre-calculated photolysis rates as well through Fast-J (Wild et al., 2000 and Brian and Prather, 

2002) and Fast-TUV (Madronich, 1989, Tie et al., 2003) radiative codes. The latter approach provides on-line 

calculation of photolysis rates, including interaction of radiation with aerosols and clouds. 

CCATT-BRAMS performance has been extensively evaluated for both urban and biomass burning areas 15 

(Freitas et al., 2009; Longo et al., 2009; Alonso et al., 2010; Longo et al., 2013 and Bela et al., 2015). Figure 11 

and Figure 12 depict examples of model comparison results with mean daily values of carbon monoxide and 

ozone mixing ratio measured near surface level in Porto Velho, Brazil from 14 August to 08 October 2012.  

 

2.3.2 Simple Photochemical Model with TEB 20 

BRAMS has also a simpler option for ozone forecasting suitable for urban areas. The Simple Photochemical 

Model (SPM) is available in the model together with the TEB scheme (Freitas et al., 2005a). The model is 

composed of 15 reactions related to ozone formation and consumption. This small number of reactions was 

possible through the lamping of a large number of hydrocarbons, allowing a simplified way to deal with the 

photochemical process in the model, which is very convenient to be used in the operational mode. TEB-SPM 25 

considers industrial and vehicular emissions of carbon monoxide, volatile organic compounds (VOC), nitrogen 

oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM2.5). In spite of its very simple formulation, the 

model has been used with relative success to simulate ozone concentrations in São Paulo (Freitas et al., 2005a) 

and Rio de Janeiro metropolitan areas in Brazil. Figure 13, adapted from Carvalho (2010), shows a comparison 

between model results and ozone observational data in two ground stations (Duque de Caxias and Jardim 30 

Primavera) of an automated network maintained by the Rio de Janeiro’s Environmental Agency (INEA). As one 

can see, the agreement is relatively high for a period over 7 days.  

2.3.3 Carbon Cycle 

This section introduces the capability of BRAMS composed with JULES on simulating CO2 fluxes associated 

with biogenic activities. Here we discuss an example of model simulation for September 2010 over the Amazon 35 

basin. Figure 14 presents the gross primary productivity (GPP, panel A), plant respiration (PR, panel B), soil 

respiration (SR, panel C) and the net ecosystem exchange (NEE=PR+SR-GPP, panel D) all as a month average. 

September corresponds to the last month of the Austral winter with typically very low amount rainfall over a 

large part of Brazil. In this month, the ITCZ stays over positive latitudes inducing rainfall only on the northwest 
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part of South America, with warm temperatures (maximum around 33 C), low moisture and clear skies. The 

abundance of photosynthetic active radiation and water availability at root zones of the tropical forest implies in 

a large GPP over the region dominated by this land cover. As SR is mostly controlled by the soil humidity, the 

larger values are present in the region with higher rainfall amounts, which are in the northwest part of the 

domain shown. At the same time, over areas dominated by cerrado and caatinga biomes, dry soil conditions 5 

dictate the response of the plants with very low values of GPP and SR. However, the simulated NEE presents a 

complex spatial distribution, with values oscillating from around zero and extreme around +/- 10 µmolC m-2s-1, 

meaning CO2 in/out- atmospheric fluxes (panel D). 

BRAMS simulation of the diurnal cycle of CO2 in the low troposphere over the Amazon Basin is discussed as 

follow. Figure 15 shows one-day simulation of CO2 mixing ratio and the turbulent kinetic energy (TKE) in the 10 

low troposphere and DSWR at surface. In this figure, TKE is used as a proxy for the depth of the atmospheric 

boundary layer, which evolves from a stable layer with less than 200 m depth during the nighttime and early 

morning towards a convective and well-mixed boundary layer with maximum heights of 1.2 to 1.5 km on late 

afternoon. The results show a realistic nighttime near surface accumulation of CO2 associated with the surface 

(soil and vegetation) respiration and the shallow stable boundary layer. After that, with the sunrise and 15 

increasing DSWR, the photosynthesis starts to dominate the net flux of CO2, which becomes more negative and 

subtracts this gas from the atmosphere. In the same time, the heating of the surface produces buoyant air parcels, 

which generates TKE deepening the mixing layer. As a result, CO2 is mixed up and depleted inside of this layer 

with its mixing ratio ending smaller than the one of the free atmosphere on late afternoon.  

2.3.4 Volcanic ash transport and dispersion  20 

The BRAMS tracer transport capability also incorporates emission, transport, dispersion, settling and dry 

deposition of volcanic emissions, both for ash and a set of related gases. This capacity represents a critical step 

towards a numerical tool suitable not only for research, but also for an emergency, on-demand system for ash 

dispersion forecast after a volcanic eruption event, which is required for the safety of the air traffic around 

disturbed areas. The volcanic ash module follows closely the system described in Stueffer et al. (2013), and 25 

more details of its implementation in BRAMS is provided in Pavani (2014) and Pavani et al. (2016). The input 

needed to set up BRAMS for volcanic ash is produced using the PREP-CHEM-SRC (Freitas et al., 2011) 

emissions preprocessing tool, which contains a comprehensive database developed by Mastin et al. (2009). This 

database has information about 1535 volcanoes, including location (geographical position and height above sea 

level of the vent) and a set of historical parameters (e.g., initial plume height, mass eruption rate, volume rate, 30 

duration of eruption, and size distribution of the ash particle), which can be used as a first guess for a potential 

returned volcanic eruption. However, by default, whenever available, observed real-time information overwrites 

the historical ones. In BRAMS simulations, a vertical profile of the ash emission distribution is defined by a 

linear detraining of 25% of the total ash mass below the injection height and 75% around it, obeying a parabola 

shape. Pavani et al. (2016) adjusted an exponential curve between the rate of ash mass produced during the 35 

eruption and the injection height, which is expressed as follow: 
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 H = 0.34M 0.24  (22) 

where H is the plume height in km (height above the vent) and M is the emission rate in kg/s. This fitting 

formula is an additional method to make a first guess of the erupted mass of ash when the injection height is 

known.  

The model functionality for volcanic ash dispersion has been applied to real cases. One example is the eruption 5 

of the Puyehue volcano in Chile, which occurred around 20:15 UTC on 04 June 2011 expelling a huge mass of 

ash and gases up to 13 km height above the sea level. This eruptive event caused the closure of numerous 

airports for many days and transport disruption in several countries in South America, South Africa, and even 

Australia and New Zealand. Additionally, ash scavenging caused harm to agriculture and livestock, besides a 

sort of other economical and health-public related issues. Costa et al. (2012) described the development and 10 

application of a remote sensing technique for traces of ash retrieval based on METEOSAT-8 satellite data. 

Figure 16 shows the location of ash as determined by this technique on 15 UTC on 06 June 2011, about 44 

hours after the first eruption event. The eruption introduced material in the jet stream region, which was rapidly 

eastward transported following Rossby wave circulation. 

BRAMS results for this case study showed significant improvement with the use of the monotonic advection 15 

scheme described on section 2.1.3.1, since monotonicity is required to properly model the long distance 

transport of tracers associated with sharp, small-scale emission source within low-resolution atmospheric 

models. An example of the model performance on simulating the long-range transport of ash is shown in Figure 

17 (a more comprehensive analysis can be found in Pavani et al., 2016). Panel A shows the simulated vertically 

integrated total mass of ash (mg m-2) for the same time of the remote sensing retrieval image (Figure 16). Panel 20 

B presents the total ash mass concentration (µg m-3) at approximately 9,500 m above the surface. At beginning 

of the eruption, ash was transported eastward for about 20 degrees, after then assumed an undulating shape 

associated with the Rossby waves. The ash layer at 9,500 m constitutes primarily of small size particles, since 

the larger and heavier ones quickly falls vertically due the gravitational force. The higher sensitivity of the ash 

retrieval in the upper levels explains the better agreement between the ash distribution presented in this panel 25 

and the traces of ash retrieved by remote sensing (Figure 16). The wider ash distribution close to the volcanic 

vent on panel A is associated mainly with the vertical settling of the large, heavy ash particles that ends getting 

different wind circulation and/or are quickly deposited over land. 

2.4 Additional features, miscellaneous aspects  

2.4.1 Coupling with the STILT Lagrangian Particle Dispersion Modelling 30 

The Stochastic Time-Inverted Lagrangian Transport model (STILT, Lin et al., 2003) is a Lagrangian model 

framework coupled with surface emission models, and has been used to identify sources and their influence on 

receptors in studies with a multitude of scales and chemical components (see Gerbig et al., 2003, Miller et al., 

2008, 2013, Xiang et al., 2013, McKain et al., 2015). The core component of STILT is a Lagrangian particle 

dispersion model that has two key features that allows for a realistic representation of dispersion: (1) STILT 35 

accounts for sub-grid scale transport and dispersion by incorporating an stochastic component associated with 

small-scale turbulence (Lin et al., 2003), (2) STILT also accounts for vertical transport due to parameterized 

convective clouds (Nehrkorn et al., 2010). However, in order to take full advantage of BRAMS turbulent and 

convective models, additional turbulence- and convection-related quantities are included in BRAMS output so 
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that can be directly used by STILT.  

Following Lin et al. (2003), in STILT each wind component ui can be decomposed following a Markov 

assumption, i.e. the grid volume average component ui  and a turbulent component ui’. The turbulent 

component is modeled after Hanna (1982), who defines the autocorrelation coefficient in terms of the 

Lagrangian time scale TLi and the standard deviation of wind σui in the mixing layer: 5 

 

ui' t +Δt( )=α i Δt( )ui' t( )+N 0,σ ui
t( )( ) 1− σ i Δt( )( )2 ,

α i Δt( )= exp −Δt
TLi

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

 (23) 

where t is the previous time, ∆t is the time step, and N is a random number following the normal distribution 

with mean 0 and standard deviation given by σui. For consistency with the turbulence scheme, the standard 

deviation is computed following Nakanishi and Niino (2004). The Lagrangian time scale is determined 

following the parameterization by Hanna (1982), which also depends on the boundary layer depth. Hanna 10 

(1982) parameterization of the boundary layer depth depends on the reciprocal of vertical component of Coriolis 

vorticity, which would cause singularities at the Equator. Therefore, we implemented an alternative 

parameterization by Vogelezang and Holtslag (1996).  

When BRAMS simulations are carried out using the Grell and Dévényi (2002) cumulus parameterizations, all 

mass fluxes associated with updrafts and downdrafts (entrainment, detrainment, and vertical motion) are also 15 

saved to the output, and can be used to assign both the probability of any particle to be in the environment or in 

the cloud (either at the updraft or downdraft), as well as the vertical displacement of particles in case they are in 

the updrafts or downdrafts, using the same method described by (Nehrkorn et al., 2010). Besides, the inclusion 

of mass flux and turbulence-related variables in the output also allows a seamless integration with different 

Lagrangian Particle Dispersion Models.  20 

2.4.2 Coupling with an air parcel trajectories model 

BRAMS simulated fields can readily be applied as input data to a 3-D air parcel kinematic trajectory model 

described in Freitas et al. (1996, 2000). Forward and backward time integrations are allowed using a 2nd order 

in time accurate scheme. The trajectories are computed using the same map projection and the vertical 

coordinate of BRAMS and also includes a sub-grid scale vertical velocity enhancement associated with sub-grid 25 

scale convection not explicitly solved by model dynamics. 

2.4.3 Digital filter 

A digital filter for model initialization has been implemented in BRAMS and demonstrated capability to reduce 

high-order imbalances and inconsistencies among model variables, with potential to improve deterministic 

forecasts. 30 
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2.4.4 Model output for GrADS visualization  

A new feature present in BRAMS is the possibility of the model output be produced in GrADS 

(http://iges.org/grads) format during the run time, simultaneously with the model integration. This feature is 

especially important for operational centers by allowing faster generation of operational products.  

2.5 Model data structure and code aspects 5 

BRAMS code is mostly written in FORTRAN 95, with a few modules written in C. BRAMS has a pure MPI 

parallelism. Only the horizontal domain is decomposed over MPI ranks. Prior to version 5, BRAMS had a 

master-slave parallelism, where only the slaves advance the state of the atmosphere over time while the master 

performs initialization, domain decomposition and I/O.  

Around 2007, BRAMS was run on machines with less than 100 computing cores. Parallel scalability of BRAMS 10 

on machines with higher core count was unknown. In 2007 CPTEC acquired the SUN-NEC cluster, named 

UNA, with 275 nodes, each node with two dual-core AMD Opteron 2218, with a total of 1,100 cores. Each node 

addresses 8 GB of central memory and the nodes are connected to a 70TB Lustre parallel file system. UNA was 

used to enhance the parallel scalability of BRAMS from about 100 cores to about 1,000 cores. In 2011 CPTEC 

acquired a Cray XE6 named “TUPA” with 1304 computing nodes, each node with two 12 cores AMD Opteron 15 

Magny Cours with a total of 31,296 cores. Each node addresses 32 GB of central memory and the nodes are 

connected to an 866TB Lustre parallel file system. TUPA was used to enhance BRAMS parallel scalability from 

about 1,000 cores to about 10,000 cores.  

Core count increase was used to enhance resolution. CPTEC’s operational domain covers most of South 

America and parts of the surrounding oceans, spanning an area of approximately 6,800 km x 7,400 km. UNA 20 

was used to enhance horizontal resolution from the previous operational resolution of 20 km to the new 10 km 

resolution, keeping 38 vertical levels at both grids. TUPA was used to enhance horizontal resolution to 5 km and 

increase the number of vertical levels to 45. The 5 km grid has about 90 million grid points, about 19 times the 

number of grid points of the 20 km grid. To keep numerical stability according to the CFL condition, the time 

step integration has to be decreased according to horizontal grid resolution, increasing the total amount of 25 

computing from the 20 km grid to the 5 km grid by a factor of about 76 times per forecasting day. This increase 

in computing has to be achieved by enhancing parallel scalability by a factor of 100, from about 100 cores to 

about 10,000 cores. 

Parallel scalability was enhanced by working on four unglamorous computing phases. Input and output 

algorithms were sequential. Master-slave parallelism wasted computational resources and created unnecessary 30 

synchronization points. Old coding practices used too much memory. Post-processing was offline and used a 

sequential algorithm. The work on each of these four directions is summarized hereon.  

On BRAMS version 4, input was performed by the master process. The master process input new boundary 

conditions every three hours of forecast time, performed domain decomposition and sent the sub-domains to 

slaves. This was a sequential algorithm since a single process (master) computed the decomposition and sent the 35 

data. Consequently, runtime increased with the number of slaves since the number of data partitions (and 

messages) increased with the number of slaves. BRAMS intermediate version 4.2 moved the domain 

decomposition to the slaves (Fazenda et al., 2009 and Fazenda et al., 2011). The master process read each input 

data field and broadcasted the full field to the slaves. Each slave extracted its own sub-domain from the 
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broadcasted field, parallelizing domain decomposition. Figure 18 contains the impressive execution time 

reduction from the original version 4.0 sequential algorithm to the version 4.2 parallel algorithm as a function of 

slave processes count. Data of Figure 18 was collected at UNA on a 24 hours forecast over the 20 km resolution 

CPTEC’s operational grid. 

On BRAMS version 4, the master process performed output. Each slave process sends its sub-domain to the 5 

master process, that collected the slave partitions through MPI point-to-point communications, composed the 

full field and outputs each field. Again, this was a sequential algorithm since its execution time increases with 

the number of slaves. Two solutions were implemented at UNA and incorporated at BRAMS intermediate 

version 4.2. The first solution was to use a collective MPI operation to gather all sub-domains of each field at 

the master process prior to output. The second solution was to use UNA’s local disk at each node for output: 10 

each slave wrote data on its own sub-domain to the local disk, moving the gather phase to post-processing. 

Since execution time of MPI_Gather depends on the inter-node network speed, both solutions were kept as user-

selected options at run-time (Fazenda et al., 2009 and Fazenda et al., 2011). Figure 19 compares the execution 

time of the output phase of the original version 4.0 sequential algorithm with both version 4.2 parallel 

algorithms as a function of slave processes count. Data of Figure 19 was collected at UNA on a 24 hours 15 

forecast over the 20 km resolution CPTEC’s operational grid. 

Replacing BRAMS version 4 input and output sequential algorithms by version 4.2 parallel algorithms 

substantially reduced the workload of the old master process. Thus, there is no reason to distinguish the master 

process from slave processes, and all processes can perform the same computation (computing the timestep 

phase), although only one of them (the old master, now MPI rank zero) performs I/O operations.  20 

Elimination of the master process had a profound impact in code structure, since from the original version 

thereon; BRAMS always had one set of procedures for the master process and a distinct set of procedures for 

slave processes. It also contained a third set of procedures to connect master and slave codes just for sequential 

(non-MPI) runs. BRAMS version 4.2 collapsed these three distinct source codes into a single code, since the 

master/slave distinction occurred only at I/O, and a sequential computation can be performed on a single MPI 25 

process.  

Figure 20 shows the execution time reduction at UNA on 20 and 10 km grids due to input, output and code 

structure optimizations just summarized (Fazenda et al., 2009 and Fazenda et al., 2011). These optimizations 

increased parallel scalability, allowing execution time reduction by increasing core count. 

The availability of TUPA allowed experimentation with the 5 km grid. The first experiments could not use all 30 

cores in each node, due to the high memory requirement per MPI process. Only eight of the twenty-four cores 

per node could be used at preliminary executions. A detailed analysis showed that the higher memory usage was 

due to an old coding practice, from the times when dynamic memory allocation in Fortran was expensive: 

allocate large scratch arrays at the beginning of the computation, keep these scratch arrays allocated throughout 

the computation and use them whenever scratch areas where required. It turns out that there were just too many 35 

and too large scratch areas. A long and tedious work replaced the largest scratch areas by dynamically allocated 

and deallocated areas that exist only at required code sections. This procedure reduced the memory requirement 

per process from the original 3.84 GB to 1.08 GB, allowing the use of all 24 cores per node (Fazenda et al., 

2012).  
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The left side of Figure 21 contains execution time of the 5 km grid on TUPA with fixed 400 nodes and 

increasing core count per node from 1 to 24. It shows execution time stagnation around 4.800 cores. The right 

side of the same figure shows execution time explosion on input, timestep and output phases as a percentage of 

total execution time. It is clear that the output phase responsibility increases with core count, up to a point where 

output dominates the computation.  5 

The output phase at TUPA used the MPI_GATHER solution described above. The local disk output solution, 

used at UNA, could not be used at TUPA, since TUPA computational nodes are diskless. A new form of output 

had to be devised. MPI-IO and parallel HDF-5 were implemented as code options, selected at run-time. Both 

forms of parallel I/O scaled correctly. Figure 22 contains the execution time and the parallel efficiency of the 5 

km resolution grid on TUPA up to 9,600 cores. Execution time with 9,600 cores was low enough to allow daily 10 

operational runs at CPTEC on the 5 km resolution since the end of 2012. 

 A recent, independent work (Souto et al., 2015) obtained even better scalability of BRAMS version 5 on the 5 

km grid on the Santos Dumont cluster. This is an ATOS/BULL machine with 786 nodes, each node containing 

two Intel Xeon E5-2695 with 12 cores each, totalizing 18,144 cores. The same grid on the same domain was run 

from 1,024 cores to 13,400 cores, achieving a parallel efficiency of 78% on 13,400 cores with respect to the 15 

1,024 cores execution.  

2.6 Ongoing work features 

2.6.1 Spread fire model 

The Spread Fire (SFIRE) is a semi-empirical fire propagation model developed by Coen (2005), Clark et al. 

(2004) and Mandel et al. (2009, 2011) that was coupled to BRAMS model and is currently under evaluation. 20 

SFIRE simulates a fire propagation based on a spread rate S = S x, y, t  in an orthogonal direction to the fire 

boundary and expressed as a function of the wind 𝑣 = 𝑣 𝑥, 𝑦, 𝑧, 𝑡  and terrain gradient ∇𝑧. The model provides 

the sensible and latent heat fluxes associated with the fire propagation (the second terms of RHS of Eq. 23 and 

24, respectively) allowing feedbacks between the combustion processes and the surrounding atmosphere. The 

total sensible QH and QE latent heat fluxes are given by 25 

𝑄! = −𝑐!𝜌!𝑇∗𝑢∗ +
𝐹 𝑇 − 𝐹 𝑡 + Δ𝑡

Δ𝑡
1

1 +𝑀!
𝑤ℎ (23) 

𝑄! = −𝜒∗𝜌!𝑢∗ +
𝐹 𝑇 − 𝐹 𝑡 + Δ𝑡

Δ𝑡
𝑀! + 0.56
1 +𝑀!

𝑤𝐿 (24) 

Here the fluxes are depending on properties of forestry fuels models, following Anderson (1982) categories, and 

of an exponential decay function of total fuel fraction, F (see Table 4 for detailed description of the symbols). 

The fuel fraction decreases exponentially from the initial ignition time ti (Albini, 1994) and is given by 

 

𝐹 𝑥, 𝑦, 𝑡 =
1

𝑎𝑟𝑒𝑎
  𝑒!

!,!"#$   !!!! !,!
! !,!   

(!,!)∈    !(!)

𝑑𝑥𝑑𝑦  

1                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (25) 
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To implement a link between SFIRE and BRAMS, an interface code was built inspired on the WRF version. 

New modules for the memory allocation and initialization were developed and a new namelist (sfire.in) was 

introduced. Currently, the fire spread model run only on a serial mode inside of a BRAMS parallel simulation. 

Full parallelization of the SFIRE model is postponed for future versions. 5 

The user needs to produce fuel models classes map and topography defined on the refined surface meshes used 

by SFIRE, to do so the user must download any necessary high resolution fields (topography raster and FNNL 

fuel models (Anderson, 1982)) and convert them into a SIG for ASCII format, through a Euclidean allocation 

interpolation. Instead the user can, use topography from BRAMS, although it is highly smoothed for the needs 

of sfire, and the code can’t benefit for more accurate fire spread computations, because required a high 10 

resolution grid. This high resolution data is interpolated and assimilated by BRAMS-SFIRE in fire mesh 

simulations.  

The available atmospheric data to BRAMS is limited to around 111 km resolution an should simulated in 

downscaling grids, each with a 4 to 5 refinement ratio, and can incorporated weather sounding data. BRAMS 

model simulated on 3-D grid covering the Earth surface, and only the downscaling refined atmospheric domain 15 

can be activated with the SFIRE model. BRAMS-SFIRE was applied to the region of Alentejo in Portugal, but 

can be applied to any other region of the world. The coupled model has a input file named “namelist.fire” where 

the user is able to introduce the properties of fuel models of the region of interest (Menezes, 2015). 

The average sensible and latent heat fluxes released in the time interval t, t + ∆t , Eqs. 23 and 24, from SFIRE 

are passed into the atmospheric model trough fluxes coming from boundary conditions and mixed in boundary 20 

layer by the PBL scheme.  

One of the results from the BRAMS-SFIRE simulation showed that over three regions, of flat land and low 

hilly, the propagation of fireline originated sensible heat fluxes of 28  𝑘𝑊𝑚!! approximately. During its spread 

over the fuel models 1 and 2, the fire burned them quickly and burned more slowly the fuel model 4, which 

during its combustion was degrading fuel and releasing fluxes of about 2.5  𝑘𝑊𝑚!!, over fuel model 8 was 25 

liberating fluxes on the order of 1.6  𝑘𝑊𝑚!! and 1.4  𝑘𝑊𝑚!!, and over fuel model 9 liberating fluxes of the 

order of 1.2  𝑘𝑊𝑚!!, which glowed until its extinction which takes place to 0.75  𝑘𝑊𝑚!! values or less. The 

spread was influenced by the topography gradient, following dispersion over valleys or down the mountain 

(Ossa mountain range, Figure 23) or simply propagating into plain zones. In all three regions, propagation 

occurred in an elliptical pattern. In Ossa mountain range region, the wind is anabatic with intensity 4.5  𝑚𝑠!!  30 

and changes its pattern when fire outbreak begin to burn, becoming disordered with vortices on the fire which 

increased the intensity of the wind to 7.5  𝑚𝑠!!, as the fire develops and fireline spread this pattern extends to 

the entire region (Figure 23).  

 

2.6.2 Shallow convection parameterization 35 

Ongoing research and development includes the interaction between shallow cumulus and radiation. Preliminary 

results show improvements in the representation of the surface radiation budget. It is also in development a 

formulation for nighttime mechanically forced clouds. 
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3 Applications for weather and air quality forecasting 

3.1 Regional air quality forecast 

Since March 2003, previous versions of BRAMS are applied operationally at CPTE/INPE for integrated weather 

and air quality forecasts over South America. Besides the traditional meteorological fields, forecast of biomass 

burning related aerosols and the main trace gases prejudicial to the health public such as carbon monoxide and 5 

ozone are generated once a day with 3-day ahead time window. The forecast is routinely available at the 

webpage http://meioambiente.cptec.inpe.br/. For the next months, CPTEC/INPE plans to implement BRAMS 

version 5.0 in the operational forecast system, running on 20 km grid spacing. 

3.2 Regional and local scale weather forecast 

Since January 2013, BRAMS has been applied operationally at CPTEC/INPE to provide up to 3½ days weather 10 

forecast. The system ran twice a day on 5 km horizontal grid spacing with the grid domain encompassing the 

South America continent and part of the neighbors Oceans. On vertical, model grid spacing starts with 50 m 

increasing to 800 m at the upper levels. The numbers of grid points are 1360 x 1489 x 55 (~ 100 million grid 

cells) and the model runs over 9600 cores to process the forecast, with initial and boundary conditions taken 

from the GFS/NCEP global model, which are pre-processed using the RAMS ISAN analysis software package. 15 

The forecast is on-line available at the web page 

http://previsaonumerica.cptec.inpe.br/golMapWeb/DadosPages?id=Brams5. Robust evaluations of BRAMS 5 

km forecasts are provided by Figure 24 and Figure 25. The former one shows BIAS and RMSE of five near 

surface quantities (2-meter temperature and dew-point temperature, 10-meter wind speed, 24-h accumulated 

precipitation and the mean sea level pressure). The evaluation was performed using observations from 20 

approximately 1000 surface stations distributed all long of South America and for the time period comprising 15 

January of 2013 to 15 January of 2015. The evaluated quantities have a BIAS in a numerical range of ~ -1.0 to ~ 

+1.0, which are consistent with mostly of state-of-the-art NWP models with forecast available for South 

America. For RMSE, the 24-h accumulated precipitation shows the lower range of value (~1.75), with wind 

speed, dew-point temperature and pressure oscillating around ~2.0. The temperature has the larger RMSE 25 

(~2.25 K), with higher values during the dry season (austral winter). Sensitivities studies (not shown) have been 

demonstrated that the initial soil moisture field, provided by the Gevaerd and Freitas (2006) technique and 

currently used in the operations, has a significant accountability for this larger RMSE. Therefore, improving the 

representation of soil moisture in the model would provide further gain in model skill.  

Figure 25 shows model skill in terms of the Equitable Threat Scores (ETS) and the BIAS scores of the 24-h 30 

accumulated rainfall for 36 and 60-hour time integration and averaged over the period of 15 January of 2013 to 

15 January of 2015. The BIAS score measures the ratio of the frequency of forecast events to the frequency of 

observed events, binned by certain thresholds. A perfect model would obtain a value of 1 for both ETS and 

BIAS scores for any threshold. The forecast skills are very reliable and similar to the state-of-the-art NWP 

models. ETS change from ~0.3 to ~0.07 from small to large thresholds. Over the South-Southeast portion of 35 

Brazil, which corresponds to the larger amount of inhabitants of South America, the forecast has larger skill. 

Regarding BIAS scores, the model tends to overestimate rain amount at the lower and higher thresholds but is 

pretty close to the optimal value of 1 in between.  
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4 Conclusions 

The original RAMS/CSU model was advanced towards a fully integrated regional atmospheric chemistry 

model, which includes carbon and biogenic VOC’s cycles, aerosol effects, urban surfaces and others features, 

giving rise to the Brazilian version named BRAMS. Besides, BRAMS runs on massively parallel 

supercomputers, clusters, and personal x86 systems with high efficiency.  5 

Here the main features of the latest version 5.2 are described which includes a state-of-the-art set of physical and 

chemical parameterizations for radiation, cloud microphysics, scale-aware convective parameterization and 

turbulence scheme, a land-surface model for urban areas and carbon cycle, and availability of higher order time 

integration and advection schemes. BRAMS has being applied for scientific research related to severe weather, 

urban heat island, urban and remote (e.g. fire emissions) air pollution, aerosol-cloud-radiation interactions, 10 

carbon and water cycles over the Amazonia including aerosol effects, volcanic ash dispersion, and many others 

subjects. For the purposes of operational environmental forecast, BRAMS is applied in several regional forecast 

centers and at CPTEC/INPE, providing routinely weather and air quality forecasts for South America. 

Besides its applications in research and operational forecasting, BRAMS has been a platform of joint model 

development in South America, as so playing a great role on helping to build up a South American community 15 

of atmospheric modelers. Highlights the participation of young scientists.   

Lastly, to maintain and advance its competitive in the select team of limited area regional environmental models 

in the world, BRAMS needs to keep expanding the community of user and developers, continue being tested 

and evaluated against observations, and improving the sub-model components. Within the list of the 

immediately needed improvements, is the introduction of a data assimilation procedure to allows BRAMS has 20 

its own initial condition for the integration. This step is essential for a further and significant gain of skill of this 

modeling system in both, operational and research areas. 

5 Code availability 

BRAMS software is available under the GNU Public License. The main code as well as pre- and post-

processing software and input data are available on the website http://brams.cptec.inpe.br/, which is officially 25 

maintained by the CPTEC/INPE in Cachoeira Paulista, São Paulo, Brazil.  
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Table 1. List of symbols 

 

Symbol 

 

Definition 

u east-west wind component 
v north-south wind component 
w vertical wind component 
f Coriolis parameter 
Km eddy viscosity coefficient for momentum 
Kh eddy viscosity coefficient for heat and moisture 
θil ice-liquid water potential temperature 
rn    water mixing ratio species of total water, rain, pristine crystals, aggregates, 

and snow 
ρ0 reference state for air density 
con   subscript denoting tendency from convective parameterization 

rad subscript denoting tendency from radiation parameterization 

res    subscript denoting tendency from resolvable scale microphysical 
parameterization 

g gravity 
rt total water mixing ratio 
rv water vapor mixing ratio 
π0 reference state for Exner function 
π’    perturbation Exner function 
θv virtual potential temperature 
θ0 reference stare for potential temperature 
Cv specific heat of air at constant volume 
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Table 2. Main configuration options in BRAMS 5.2 

Basic equations o Non-hydrostatic time-split compressible 
o Option for complete, mass conservative formulation for the Exner function 

prognostic equation 

Coordinates o Vertical coordinate: 
o Standard Cartesian coordinate  
o Terrain-following height coordinate  

o Horizontal coordinate: 
o Standard Cartesian coordinate  
o Rotated polar-stereographic transformation 

Computational 
grid 

o Arakawa-C grid staggering on horizontal, Lorenz grid on vertical 
o Vertical grid-spacing can vary with height 
o One-way nesting only 

Time 
integration 

o Time differencing: 
o Hybrid combination of leapfrog and forward-in-time, with option for 

Robert-Asselin-William time filter (William, 2009) 
o Runge-Kutta 2nd and 3rd order (Wicker and Skamarock, 1998, 2002) 
o Adams-Bashforth-Moulton 3rd order (Wicker, 2009) 

o Time-split small step for acoustic and gravity-wave modes: 
o Small step horizontally-explicit, vertically-implicit 
o Divergence damping option 

Advection 
schemes 

o Forward upstream of 2nd order (Tremback et al., 1987) 
o Monotonic advection scheme for scalars (Walcek, 2000) 
o 1st to 6th order advection options (horizontal and vertical, Wicker and 

Skamarock, 1998, 2002) with positivity constraint (Skamarock, 2006). 

Turbulence 
closure 

o Smagorinsky (1963), Lilly (1962) and Hill (1974) closure formulation 
o Deardorff (1980) level 2.5 scheme  
o Mellor-Yamada level 2.5 scheme (Mellor and Yamada, 1982) 
o Nakanishi & Nino (2004) TKE based formulation 
o Taylor’s theory based formulation (Campos Velho, 1998) 

Cloud 
microphysics 

o Single-moment bulk scheme (Walko et al., 1995)  
o Double-moment bulk scheme (Meyers et al., 1997) 
o Thompson double-moment and aerosol aware scheme (Thompson and 

Eidhammer, 2014) 

Radiation o CARMA (Toon et al., 1989) schemes for long- and short-wave radiation 
o RRTMG (Iacono et al., 2008) schemes for long- and short-wave radiation 

Convective 
Parameteri-
zation 

o Modified Kuo for deep convection (Tremback, 1990)  
o For shallow convection based on the heat engine approach (Souza, 1999) 
o Grell and Deveny (2002) ensemble version for deep convection  
o Grell and Freitas (2014) ensemble version, scale and aerosol aware for deep 

and shallow convection 

Surface 
processes and 
lower boundary 

o LEAF-3 soil-vegetation-snow parameterization (Walko et al., 2000) 
o Town Energy Budget (TEB) scheme for urban areas (Freitas et al., 2007)  
o Joint UK Land Environment Simulator scheme (Moreira et al., 2013) 
o Fire spreading model (Mandel et al., 2010, Menezes, 2015)* 
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Table 2. Main configuration options in BRAMS 5.2 (continued)  

Chemical 
processes 

o Gas/aqueous phase chemistry with CCATT (Longo et al., 2013) and SPM 
Freitas et al., 2005a) modules. 

o Photochemistry with LUT, FAST-TUV and FAST-J photolysis calculation  
o SPACK chemical mechanism pre-processor  
o PREP-CHEM-SRC pre-processor emission fields (Freitas et al., 2011) 
o Rosenbrock 2nd and 3rd order solvers 
o Dry and wet deposition  

Aerosol 
processes 

o Simple aerosol model for volcanic ash, biomass burning, sea salt and urban 
aerosols (Longo et al., 2013) 

o MATRIX aerosol model (Bauer et al., 2008)* 
o Aerosol direct effect included in CARMA radiation scheme 

Upper 
boundary 
condition 

o Rigid lid 
o Rigid lid with a high-viscosity layer aloft 

Lateral 
boundary 
condition 

o Klemp and Wilhelmson (1978) radiative condition 
o Large-scale nudging boundary conditions (Davies, 1983) 

Initialization 
and Data 
Assimilation 

o Horizontally homogeneous from a single sounding 
o RAMS-ISAN analysis package (Tremback, 1990) with inclusion of tracers 
o Four-dimensional nudging (Newtonian relaxation) to data analyses with 

inclusion of tracers 
o Digital filter  
o Soil moisture initialization using real time cycling estimation from an off-line 

hydrological model (Gevaerd and Freitas, 2006) 
* Under development and/or evaluation 

 

Table 3. List of parameters that can be modified by the user when using TEB in the model. 

Variable Meaning and Units 
RUSHH1 Morning Rush Hour (Local Time in hours) 
RUSHH2 Afternoon/Evening Rush Hour (Local Time in hours) 
HC_ROOF, HC_ROAD, HC_WALL Heat capacity for Roof, Road, and Wall layers (J m-3 K-1) 
TC_ROOF, TC_ROAD, TC_WALL Thermal conductivity for Roof, Road, and Wall layers (Wm-1K-1) 
D_ROOF, D_ROAD, D_WALL Depth for Roof, Road, and Wall layers (m) 
Z0_TOWN Urban type roughness length (m) 
BLD Fraction occupied by buildings in the grid cell (%) 
BLD_HEIGHT Building Height (m) 
BLD_HL_RATIO Vertical/Horizontal rate (N/D) 
AROOF, AROAD, AWALL Roof, Road, and Wall albedo (N/D) 
EROOF, EROAD, EWALL Roof, Road, and Wall emissivity (N/D) 
HTRAF Maximum value of sensible heat released by Traffic (W m-2)  
HINDU Maximum value of sensible heat released by Industry (W m-2)  
PLETRAF Maximum value of latent heat released by Traffic (W m-2)  
PLEINDU Maximum value of latent heat released by Industry (W m-2)  
 5 
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Table 4. List of symbols SFIRE model 

𝑢∗ scale friction velocity 
𝜌!	   air density 
𝑇∗	   scale of temperature 
𝜒∗	   scale of specific moisture 
𝑐!	   specific heat at constant pressure 
𝑀!	   moisture content of the fuel particle 
𝑤	   total fuel load per unit area 
ℎ	   low heat value 
𝐿	   specific latent heat of water condensation  
𝑡	   time 
𝑄!	   sensible heat flux 
𝑄! 	   latent heat flux 
 

 

 

 5 

 

 

 

 

 10 

 
Figure 1. A 3-D hypothetical case study: transport of a rectangular parallelepiped by a realistic divergent flow 

over the Southeast part of Brazil. (A) The tracer concentration field expressed in terms of mass mixing ratio at 

initial time and 1900 m height; the horizontal wind flow is also depicted. (B) The correspondent mass mixing 

ratio after 12 hours as simulated by the monotonic advection scheme. 15 

 

 

 

(A) Tracer Field at initial time   (B) Tracer Field at time 12h       

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-130, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 7 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



42 

 

 
Figure 2. Time series of downwelling short-wave irradiance (Wm-2) at Abracos Hill AERONET site during a 

cloudy period from 17 to 21 September 2002 from BRAMS 5.2 results with (in red) and without (in blue) 

aerosol effects. The black line refers to measurement data in the same periods and the green (line and marks) is 

the attenuation due to aerosol effect. 5 

 
Figure 3. Time series of downwelling long-wave irradiance (Wm-2) at Abracos Hill AERONET site during a 

cloudy period from 17 to 21 September 2002 from BRAMS 5.2 results. The black line refers to measurement 

data in the same period. 
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Figure 4. RMSE of air temperature at 2 meters using JULES (in red) and LEAF3 (in blue) surface schemes with 

BRAMS over South America during (A) wet season in March 2010, and (B) dry season in September 2010.  

 

 5 

 

 

Figure 5. Mean bias score versus precipitation thresholds for South America for a set of 30 forecasts 

of 24-h accumulated precipitation for 120h in advance for (A) January 2008 and (B) January 2010. 

Blue line represents simulations using FY weight method and red line the original EN. Blue bars 10 

indicate significance test from the bootstrap method (Hamill, 1999). 
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Figure 6. Averaged precipitation rates over 15 runs for total precipitation (A, B, and C) and convective (non-

resolved) precipitation (E, F and G), using the scale dependence formulation (GF-A) and horizontal resolutions 

of 20km (A, E), 10km (B, F) and 5km (C, G). The column on the right (panels D and H) depicts results on 5 km 

without the scale dependence formulation (GF-NS). Units are mm/day. 5 

 

 

 
Figure 7. Simulation of the diurnal cycle of precipitation over the Amazon Basin with GF scheme and the 

diurnal cycle closure. (A) An example of 5 days forecast of the convective parameterization precipitation rate 10 

(mm h-1, averaged over the model domain). (B) The same as (A) but daily averaging also over 15 runs with 120-

hour forecast each. The green line shows the diurnal cycle of the downwelling short-wave radiation (W m-2) to 

spot the local time. 

 
 15 
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no scale  dependence  

20km                         10km                               05km 
                      with scale dependence  
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Figure 8. TRMM 24-hour accumulated rainfall for day 12 October 2015. The data is produced on 0.25-degree 

grid resolution and the unit is mm. 

 

 5 

Figure 9. BRAMS model forecast of 24-hour accumulated (A) total precipitation and (B) from 

convective parameterization for 12 October 2015 and on 5 km grid spacing. Unit is mm. 

 

 

 10 
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Figure 10. A chart of the BRAMS system with the CCATT chemistry model component. The gray blocks and 

the black arrows indicate the codes that make up the CCATT-BRAMS System and their outputs, respectively. 

The white blocks indicate either the input files for the pre-processing (first line) as the pre- processing outputs 

(third line), which are also input files for pre-processing emissions and boundary conditions and routines for 5 

composing the BRAMS model (adapted from Longo et al., 2013). 
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Figure 11. Time series of mean daily values of mixing ratios ozone measured in an Amazonian ground 

station and from CCATT-BRAMS simulations.  

 

 5 

Figure 12. Time series of mean daily values of mixing ratios of carbon monoxide measured in an Amazonian 

ground station and from CCATT-BRAMS simulations.  

 

 

 10 
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Figure 13. Comparisons between model results for ozone concentrations and observed values provided by INEA 

in Rio de Janeiro (Adapted from Carvalho, 2010). 

 5 

 

Figure 14. CO2 fluxes as simulated by BRAMS [µmolC m-2 s-1], average for September 2010]. (a) Gross 

primary production, (b) plant respiration, (c) soil respiration and (d) net ecosystem exchange. Positive value 

means CO2 flux from atmosphere into the land surface. 
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Figure 15. The diurnal cycle of CO2 mixing ratio (ppmv, shaded colors), the turbulent kinetic energy (TKE, m2 

s-2, black contours) and the dowelling short-wave radiation at surface (DSWR, W m-2, in white line and using 

the same scale as the height above surface on the left) as simulated by BRAMS with Jules surface scheme in the 

low troposphere. All quantities are area averaged over a portion of the Amazon Basin with tropical forest as the 5 

dominant vegetation type and correspond to an example for 27 January 2014. 

 

 
Figure 16. Traces of volcanic ash associated with eruption of the Puyehue volcano as retrieved from 

METEOSAT-8 satellite data. The image corresponds to 15UTC 06 June 2011. 10 
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Figure 17. (A) Vertically integrated total mass of ash (mg m-2). (B) Total ash mass concentration (µg m-3) at 

level of approximately 9500 m above surface and the associated horizontal wind. Both panels show results for 

15UTC 06 June 2011 as simulated by BRAMS model.  

 5 
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Figure 18. Execution Time of the Input Phase at UNA for a 24 hours forecasting over the 20 km grid 

 

 

 5 
Figure 19.Execution Time of the Output Phase at UNA machine for a 24 hours forecasting with the 20 km grid 

spacing model configuration. 

 

 
Figure 20. Execution time reduction at UNA machine on 20 and 10 km grid spacing model configurations. 10 
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Figure 21. Execution time at TUPA of the 5 km grid and processes responsibility 

 

 

 
Figure 22. On the left, execution time of BRAMS on 5km grid spacing covering South America and adjacent 5 

Oceans in function of the number of computing cores. On the right appears the corresponding parallel 

efficiency.  
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Figure 23. (A) Fuel models of Ossa mountain range region. Panels from a1 to a13 show sensible heat fluxes 

𝑾𝒎!𝟐   during the fireline spread and behavior of horizontal atmospheric wind 𝒎𝒔!𝟏    at surface under the 

influence of the fire in different moments of forestry fire occurred in 7/8/2006 in Ossa mountain range in 

Alentejo in Portugal, simulated by BRAMS-SFIRE. 5 
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Figure 24. BRAMS 5km operational forecast over South America. Model performance evaluation with BIAS 

(upper panel) and RMSE of five near surface quantities: 2-meter temperature and dew-point temperature (K), 

10-meter wind speed (m/s), 24-h accumulated precipitation (mm) and the mean sea level pressure (hPa).  

 5 
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Figure 25. Equitable Threat Score (ETS) and BIAS score for the BRAMS 5km operational forecast over South 

America. Results are runs averaged over two model domains (South America and the South-southeast portion of 

Brazil) and the time period from 15 January of 2013 to 15 January of 2015. The results also show skill for 30 

and 60-h time integration. 5 
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